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1. Introduction 
This document reports the outcomes of linear uncertainty analysis undertaken on the NFSEG model 

constructed by St Johns River and Suwannee River Water Management Districts. Analyses were 

focussed on a small number of parameters and predictions; with little difficulty analyses of the type 

documented herein could be extended to include a greater number of parameters and predictions. 
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2. Theory 

2.1 General 

The theoretical basis for linear uncertainty analysis is discussed at length in Doherty (2015). Except 

for one, all of the methodologies employed in the present study are discussed in that text, and 

implemented by utility programs that support the PEST suite of software (Doherty, 2016). However, 

a new methodology has been applied for the first time in the present study to overcome difficulties 

encountered in evaluating the uncertainties associated with model-predicted system changes. This 

methodology is described in the present document following a brief overview of the equations that 

underpin linear parameter and predictive uncertainty analysis. 

2.2 Uncertainty Analysis and Sensitivity Analysis 

It is useful to point out the relationship between so-called “sensitivity analysis” and analyses that are 

documented in the present text; the latter are described by the general term “linear uncertainty 

analysis” herein.  

Linear predictive uncertainty analysis makes use of two sets of sensitivities. These are as follows: 

 The sensitivities of model outputs used in the calibration process to all adjustable 

parameters. These are encapsulated in the matrix Z which features in the following 

equations. This matrix is often referred to as the “Jacobian matrix”. 

 The sensitivities of one or a number of predictive model outcomes to all adjustable 

parameters. These sensitivities are encapsulated in the vector y in the equations that follow. 

Sensitivities contained in the matrix Z and the vector y are “local”. This is because they are 

calculated to approximate derivatives with respect to parameters at current parameter values, the 

latter being those achieved through the model calibration process. In the study documented herein, 

these are calculated by PEST using finite parameter differences based on a three-point stencil. 

The uncertainty of any prediction made by a calibrated model is determined by: 

 The parameters to which it is sensitive, these generally representing system hydraulic 

properties, boundary condition specifications, and system stresses; 

 The innate uncertainties of these parameters, this being an expression of expert knowledge 

as it pertains to system heterogeneity and spatial hydraulic property variability; 

 The extent to which this so-called “prior uncertainty” is reduced through the history-

matching process. 

It is apparent that sensitivities feature strongly in linear uncertainty analysis. However other 

quantities besides uncertainties also feature strongly in this type of analysis. This, it is hoped, 

renders the outcomes of such an analysis of greater use in contexts of model-based decision-making 

than simply “sensitivity analysis”.  

The strengths of linear uncertainty analysis include the following: 

 It is relatively easy to undertake using public domain software such as PEST and PyEMU 

(White et al, 2016). 
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 The numerical burden of linear uncertainty analysis is small compared with that of nonlinear 

uncertainty analysis, especially in highly parameterized contexts. 

 Linear analysis can be readily extended to include “parameters” which would not normally 

be estimated through model calibration, including those that characterize the nature and 

disposition of historical system stresses and model boundary conditions. 

 Recent advances in linear analysis allow quantification of calibration-induced bias arising 

from model defects and simplifications; see White et al (2014).  

 As well as supporting calculation of uncertainties associated with predictions of 

management interest, various “value-added” quantities can also be calculated. These 

include: 

o dimensions of the calibration solution and null spaces; 

o parameter identifiability; 

o relative parameter uncertainty variance reduction; 

o the contributions made to the uncertainties of predictions of interest by different 

parameters and/or groups of parameters; 

o the worth of existing, or as-yet-uncollected, data in reducing parameter and 

predictive uncertainty. 

The weaknesses of linear uncertainty analysis include the following: 

 Environmental processes are not linear. Hence linear analysis is approximate. Nevertheless, 

as shown by Dausman et al (2010), linear uncertainty analysis can nevertheless yield 

informative results, even when used in conjunction with highly nonlinear models. 

 Where sensitivities are calculated through finite parameter differencing (as is done in the 

study documented herein), numerical errors can arise which detract from the integrity of 

calculated predictive uncertainties and associated quantities. The integrity of these 

quantities deteriorates even further where model predictions of interest are themselves 

calculated through differencing. 

 The integrity of linear uncertainty analysis is further eroded where model solver 

convergence difficulties threaten the precision of finite-difference sensitivities required for 

filling of the y and Z matrices.  

Unfortunately, the NFSEG model is not immune from solver convergence issues. These appear to 

have their source in the MNW2 package used for simulation of multi-layer well extraction. While 

convergence of the NFSEG model is still tight (it is generally able to achieve a head closer criterion 

just above 1E-3), convergence should ideally be somewhat tighter than this (1E-4 or better) to 

support finite-difference derivatives calculation. 

Regardless of how uncertainty analysis is undertaken, it lacks credibility if important sources of 

predictive uncertainty are not represented in the analysis. Hence, where used to assess the 

uncertainties of predictions made by a groundwater model, it must be undertaken in a highly 

parameterized context. Parameters employed in the analysis must represent the potential for 

hydraulic property heterogeneity beyond that which is inferable through the model calibration 

process; after all, it is the parameters that cannot be estimated that are potentially the main 

contributors to predictive uncertainty, and not those that can. The NFSEG model includes 8800 

adjustable parameters, all of which were included in analyses described herein. 
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2.3 Theory 

2.3.1 Uncertainty Interval of a Prediction 

The equations on which linear predictive uncertainty analysis are based are presented briefly in this 

subsection. For more information see Doherty (2015). 

Let the vector k represent parameters employed by a model. Let the vector h represent members of 

the calibration dataset; let the vector ε represent measurement noise associated with this data. Let 

the matrix Z represent sensitivities of model outputs used in the calibration process to model 

parameters. Then, if a model is linear: 

 h = Zk + ε         (2.1) 

Here, for convenience, k is assumed to be 0 where parameter values are endowed with their pre-

calibration “expected values” from an expert knowledge point of view. This protocol makes the 

above and following equations simpler, while having no bearing on their outcomes. 

Let s (a scalar) denote a prediction of management interest. Let the vector y denote sensitivities of 

this prediction to parameters employed by the model. Then: 

 s = ytk          (2.2) 

where the “t” superscript signifies matrix and vector transposition. Let C(k), a positive-definite 

matrix in which the number of rows and columns is equal to the number of elements of k, denote 

the prior covariance matrix of k. This covariance matrix thus pertains to the prior probability 

distribution of k; as such, it characterizes expert knowledge pertaining to parameter variability, 

much of which arises from hydraulic property heterogeneity within the subsurface. Let C(ε) denote 

the covariance matrix of measurement noise.  

Use of Bayes theorem to calculate the posterior variance of uncertainty of the prediction s 

computed by a linear model results in the following equation, provided that both the prior 

parameter probability distribution and the probability distribution describing measurement noise 

are multi Gaussian. 

σ2
s = ytC(k)y – ytC(k)Zt[ZC(k)Zt + C(ε)]-1ZC(k)y     (2.3)  

This equation can be shown to be equivalent to the following equation. 

σ2
s = yt[ZtC-1(ε)Z + C-1(k)]-1y       (2.4) 

The square root of variance is standard deviation. Equations 2.3 and 2.4 can thus be used to 

calculate the posterior (i.e. post-calibration) uncertainty interval of a calibrated model. For a 

Gaussian distribution, this spans the interval s-σs to s+σs at the 67% confidence level, and s-2σs to 

s+2σs at the 95% confidence level. 

If the vector y is comprised of zeros, except for its i’th element which is assigned a value of 1.0, then 

equations 2.3 and 2.4 can be used to calculate the posterior uncertainty of parameter i. 
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The first term on the right of equation 2.3 (i.e. ytC(k)y) expresses the pre-calibration uncertainty 

variance of the prediction s; the second term quantifies the reduction in this variance accrued 

through history-matching. 

2.3.2 Adding Value to Linear Uncertainty Analysis 

Through manipulation of equations 2.3 and 2.4 other useful quantities can be calculated as an 

adjunct to linear uncertainty analysis. If perfect knowledge of one or a number of parameters is 

attained, these equations can be used to compute the reduction in predictive uncertainty variance 

thereby accrued. This is referred to herein as the “contribution made to the uncertainty of 

prediction s by the pertinent parameter or parameter group”. Equations 2.3 and 2.4 can also be used 

to quantify the information content, or “worth” of individual observations, or groups of 

observations, with respect to a prediction of interest. This can be assessed in a number of ways. If, 

for example, all observations but those which comprise a particular observation group are removed 

from the calibration dataset (and equations 2.3 and 2.4 are re-formulated accordingly), the decrease 

in uncertainty variance of prediction s from its pre-calibration level constitutes a measure of the 

information content of that group with respect to that prediction. On the other hand, if that 

observation group is removed from an otherwise complete calibration dataset, the rise in 

uncertainty variance of prediction s from its post-calibration level quantifies the uniqueness of the 

information content of that observation group with respect to that prediction. 

It is interesting to note that neither equation 2.3 nor equation 2.4 features the value of a parameter 

or the value of an observation; these equations only cite sensitivities of model outputs to model 

parameters. They can thus be deployed to assess the ability of data that has not yet been acquired 

to lower the uncertainties of predictions of interest. They can thereby form a basis for optimisation 

of data acquisition. 

2.3.3 Parameters Corresponding to Uncertainty Limits 

Let the vector k denote the set of parameters which are deemed to “calibrate” a model, these 

thereby constituting the minimum error variance solution to the inverse problem of model 

calibration. Let s denote the value of a model prediction calculated using this parameter set. 

Suppose that we wish to calculate a parameter set k+δk for which the value of the prediction is s+σs, 

where σs is calculated using equation 2.3 or 2.4 ; that is, we wish to find a parameter set for which a 

particular model prediction is one standard deviation greater than its post-calibration expected 

value. It can be shown that the δk of smallest norm which achieves this outcome is: 

 δk = σsy/yty         (2.5) 

Obviously, the same equation with a leading factor of 2.0 can be used to find the parameter set of 

minimum perturbation from k which gives rise to a predictive value of s+2σs,. A leading negative sign 

finds parameter sets which give rise to predictions of s-σs and s-2σs. 

2.3.4 Uncertainty Intervals and Predictive Intervals 

A distinction is often made between the so-called “uncertainty interval” associated with a model 

prediction and the so-called “predictive interval” associated with that same prediction. The former is 

an outcome solely of parameter uncertainty. It is calculated using equation 2.3 or 2.4. The latter is 

expanded to include the “noise” associated with the prediction. It thus attempts to define the 

interval that an “observation of the prediction” could span, accounting for the fact that observations 
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of system state are accompanied by measurement noise. If a prediction is similar in nature to an 

observation comprising the calibration dataset, then the standard deviation associated with this 

noise can, in theory, be calculated from the level of model-to-measurement fit achieved through the 

model calibration process for observations of similar type. Where it is not, the level of “predictive 

noise” associated with a particular prediction must be estimated by other means. 

In some circumstances the distinction between the uncertainty and the predictive interval of a 

prediction can be ignored. In other cases it cannot. In practice, most model-to-measurement misfit 

results from so-called “structural noise” arising from model imperfections. These imperfections 

should be reduced as much as possible through the model construction and calibration processes. 

The use of many parameters, and inference of values for these parameters through highly 

parameterized inversion (as was done for the NFSEG model), helps in this regard. However structural 

noise cannot be completely eliminated, especially where a model domain is regional and its cell sizes 

are large.  

Model imperfections which are exposed through the calibration process persist when a model is 

used to make predictions. Hence these should be included in the model predictive uncertainty 

analysis process; thus predictive intervals should be used in preference to uncertainty intervals. 

Unfortunately this is a difficult undertaking, as “predictive noise” is not really “noise” at all when it 

has structural origins. It cannot therefore be treated as a homoscedastic, random quantity with no 

spatial correlation that is endowed with random values drawn from a known probability distribution. 

Nor does structural noise “cancel” when many observations are used to infer parameters through 

the history-matching process. Nor, indeed, can the calibration process be used to quantify the 

statistical structure of model output errors, as these errors are not random quantities at all. 

In practice, there is little choice but to assume that expressions of model structural deficiencies do 

indeed have noise-like qualities during the model calibration process, this enabling the use of 

equations such as 2.3 and 2.4 to quantify post-calibration parameter and predictive uncertainty 

intervals. Furthermore, when making a model prediction, the fact that model structural 

imperfections have been exposed through the model calibration process necessitates their 

expression when quantifying predictive uncertainty. Thus uncertainty intervals must be expanded to 

predictive intervals through the addition of a predictive noise component. However the prediction-

specific nature of model structural defects, and the fact that “predictive noise” is not a random 

quantity, makes this a difficult undertaking.  

For predictions that pertain to measurement types and locations used in the calibration process, it 

may be possible to quantify the magnitude, and possibly the sign, of predictive error through 

inspection of pertinent calibration residuals. That is, it may be possible to assume that structural 

noise in the future will be similar to structural noise in the past. An alternative means of 

accommodating model defects is to focus on predictive differences rather than on predictive 

absolutes, for example on model-predictive alterations to the head or spring flow at a particular 

location rather than on the actual value of this head or flow. If model structural defects lead to 

consistent errors in the making of a certain type of prediction at a certain location, then these errors 

will cancel when pertinent model outputs are differenced. The “predictive noise” term thus becomes 

zero. In practice it is unrealistic to expect exact cancellation. However it is not unrealistic to expect 
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that the structural errors associated with predictive differences will be much lower than those 

associated with individual predictions. 

2.3.5 Subspace Analysis 

Let Q denote the weighting matrix used in the calibration process. Ideally this should be proportional 

to the inverse of C(ε), the covariance matrix of measurement noise. In practice, some account must 

be taken of contributions to model-to-measurement misfit made by model structural defects in 

establishing an appropriate C(ε) before (conceptually) taking its inverse to devise an appropriate 

weighting strategy (Doherty and Christensen, 2011; White et al, 2014).  

If the matrix Q1/2Z is subjected to singular value decomposition, we obtain: 

 Q1/2Z = USVt = US1Vt
1 + US2Vt

2       (2.6) 

U is an orthonormal matrix whose columns are unit vectors that span model output space while V is 

another orthonormal matrix whose unit vectors span parameter space; S is a diagonal matrix. 

Partitioning of S into S1 and S2, and V into V1 and V2, should be such as to effectively subdivide 

parameter space into mutually orthogonal calibration-specific solution and null spaces; the elements 

of S2 are thereby zero or small. The null space defines parameter combinations that are inestimable 

due to insensitivity, excessive post-calibration correlation, and/or undue amplification of 

measurement noise in their estimation. The number of dimensions of the solution space can 

therefore be regarded as defining the number of pieces of useable information contained within the 

calibration dataset. 
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3. Linear Analysis and the NFSEG Model 

3.1 Observations and Parameters 

Details of parameters employed by the NFSEG model, and of observations comprising the NFSEG 

model calibration dataset, are described elsewhere. In undertaking linear analysis for the NFSEG 

model, parameters and observations used in computation of the Jacobian matrix (i.e. the Z matrix 

introduced in the previous section) remained unchanged from those employed in the calibration 

process, with the following exceptions. 

 “Wetting penalty observations”, used for prevention of groundwater inundation of the land 

surface in certain parts of the model domain, were removed from the calibration dataset. (It 

is worthy of note that few of these incurred a penalty during the calibration process 

anyway.) 

 Recharge multiplier parameters were decreed as adjustable. These were fixed at a value of 

1.0 during the previous calibration process. A multiplier was associated with each of the 

recharge zones depicted in figure 3.1, these corresponding to sub-basins used for HSPF 

modelling. 

 A suite of EVT rate multiplier parameters was introduced using the same zonation as that 

used for recharge multipliers; see figure 3.1 again.  

All recharge and EVT rate multiplier parameters were endowed with a value of 1.0. All other NFSEG 

model parameters retained the same values as were estimated during the calibration process.  

It is important to note that, notwithstanding the fact that linear analysis explores the extent of post-

calibration parameter (and hence predictive) variability, parameters are not actually varied through 

this process, except for the provision of incremental changes required for finite-difference 

derivatives calculation. The degree to which parameters may vary within the confines of expert 

knowledge is expressed through the prior parameter covariance matrix. This is the C(k) matrix 

featured in equations presented in the previous section. 
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Figure 3.1 Zones used for definition of recharge and EVT rate multiplier parameters. 

Table 3.1 lists parameter groups employed in the linear analysis process. All parameters within all of 

these groups were log-transformed for the purpose of calculating parameter sensitivities and for the 

purpose of expressing parameter variability.  Table 3.2 lists observation groups employed in the 

linear analysis process. 

Parameter 
group name 

Parameterization 
device 

Number of 
parameters 

Description 

k1x pilot points 518 horizontal hydraulic conductivity – layer 1 

k3x pilot points 1767 horizontal hydraulic conductivity – layer 3 

k5xk3x pilot points 201 horizontal hydraulic conductivity multiplier outside MCU – 
layer 5 

k5x pilot points 364 horizontal hydraulic conductivity – layer 5 

k7x pilot points 55 horizontal hydraulic conductivity – layer 7 

k2z pilot points 556 vertical hydraulic conductivity – layer 2 

k2zk3z pilot points 333 vertical hydraulic conductivity multiplier outside ICU – 
layer 2 

k4zk3z pilot points 139 vertical hydraulic conductivity multiplier outside MCU – 
layer 4 

k4z pilot points 230 vertical hydraulic conductivity – layer 4 

k6z pilot points 68 vertical hydraulic conductivity – layer 6 
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vanis1 entire layer 1 vertical anisotropy – layer 1 

vanis2 zoned according to 
ICU/non-ICU 

2 vertical anisotropy – layer 2 

vanis3 entire layer 1 vertical anisotropy – layer 3 

vanis4 zoned according to 
MCU/non-MCU 

2 vertical anisotropy – layer 4 

vanis5 zoned according to 
MCU/non-MCU 

2 vertical anisotropy – layer 5 

vanis6 entire layer 1 vertical anisotropy – layer 6 

vanis7 entire layer 1 vertical anisotropy – layer 7 

lcm zoned according to 
lakes 

257 multiplier applied to lakebed conductance 

rcm zoned according to 
river reaches 

1871 multiplier applied to river reach conductance 

sc zoned according to 
springs 

377 GHB conductance at springs 

rechmul zones (see fig 3.1) 904 multiplier applied to recharge rates 

evtrmul zones (see fig 3.1) 904 multiplier applied to maximum EVT rates 

lkzmul zoned according to 
lakes 

246 vertical conductivity multiplier under lakes 

Table 3.1 Parameter groups used in linear analysis. A total of 8800 parameters collectively comprise these 
groups.  

Observation group name Number of observations 
with non-zero weight 

Description 

h2001_lay1 228 Heads in layer 1: 2001 

h2001_lay2 96 Heads in layer 2: 2001 

h2001_lay3 979 Heads in layer 3: 2001 

h2001_lay4 13 Heads in layer 4: 2001 

h2001_lay5 39 Heads in layer 5: 2001 

h2001_lay7 2 Heads in layer 7: 2001 

h2009_lay1 239 Heads in layer 1: 2009 

h2009_lay2 111 Heads in layer 2: 2009 

h2009_lay3 990 Heads in layer 3: 2009 

h2009_lay4 10 Heads in layer 4: 2009 

h2009_lay5 41 Heads in layer 5: 2009 

h2009_lay7 2 Heads in layer 7: 2009 

hd2001_lay3 289 Lateral head gradients in layer 3: 2001 

hd2009_lay3 263 Lateral head gradients in layer 3: 2009 

td_lay1 0 Temporal head differences: layer 1 

td_lay2 0 Temporal head differences: layer 2 

td_lay3 639 Temporal head differences: layer 3 

td_lay4 0 Temporal head differences: layer 4 

td_lay5 34 Temporal head differences: layer 5 

td_lay7 0 Temporal head differences: layer 7 

vd_1to3 231 Vertical head differences: layer 1 to 3 

vd_3to5 36 Vertical head differences: layer 3 to 5 

qr01 92 Inflow to river segments between one or more gages: 2001 

qr09 85 Inflow to river segments between one or more gages: 2009 

qspring01 374 Inflow to springs: 2001 

qspring09 376 Inflow to springs: 2009 

qs_spring01 7 Inflow to spring groups: 2001 

qs_spring09 7 Inflow to spring groups: 2009 

qs01 10 Cumulative inflow to river upstream of a gage: 2001 

qs09 6 Cumulative inflow to river upstream of a gage: 2009 

qlake01 257 Flow to/from lakes: 2001 

qlake09 257 Flow to/from lakes: 2009 

Table 3.2 Observation groups used in linear analysis. A total of 5713 non-zero-weighted observations 
collectively comprise these groups.  
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Equations 2.3 and 2.4 feature 2 covariance matrices, namely C(k) and C(ε). Filling of these matrices is 

now described. 

3.2 Prior Parameter Covariance Matrix 

For the analyses described herein, C(k) was built as a block-diagonal matrix. In fact, submatrices 

pertaining to many of these blocks are diagonal, this denoting statistical independence of 

parameters represented by these blocks. 

Parameter groups comprising pilot point parameters were assigned a full covariance matrix based on 

spatially variable variograms. All variograms are exponential, and hence specified by the equation: 

ϒ(h)=C(0)[1 – exp (h/a)]        (3.1) 

In equation 3.1 h is distance and C(0) is the overall variance of the hydraulic property in question, 

this being equal to the sill of the variogram. The range of an exponential variogram is often 

characterized as 3a.  

For all pilot point parameters, the variogram “a” value was decreed to be pilot-point-specific. This 

reflects the fact that pilot points are not capable of representing the natural heterogeneity of a 

complex carbonate aquifer. Instead, their use implies a degree of upscaling, with the extent of 

upscaling decreasing with increasing spatial density of pilot points. Where spatial density of pilot 

point emplacement is high, they are capable of representing short range hydraulic property 

heterogeneity. Alternatively, where it is low, they can only represent long range hydraulic property 

heterogeneity. To reflect this, the variogram range associated with each pilot point was calculated in 

the following way. 

1. The average separation between the pilot point to which an “a” value must be assigned and 

its 20 closest neighbours was calculated. 

2. The “a” value ascribed to the variogram associated with that pilot point was designated as 

twice this average separation. 

Admittedly, this manner of establishing a local variogram range is somewhat arbitrary. However by 

repeating some of the analyses documented herein using variations of this methodology in which 

different “a” values were assigned to pilot points, it was established that outcomes of these analyses 

are not unduly sensitive to variogram range unless it is unrealistically large or unrealistically small. 

For all pilot point parameter groups except one, the variogram sill (applied to the logarithm of 

hydraulic conductivities associated with pilot points) was denoted as uniformly 0.25, this implying a 

standard deviation of parameter variability of 0.5, or half an order of magnitude. The exception was 

parameter group k4zk3z for which the sill was ascribed a value of 1.0, this reflecting gaps in 

knowledge of the disposition and details of the MCU. Variograms assigned to all pilot points are 

isotropic, except for a number of pilot points in the k3x and k3xk5x parameter groups to which a 

horizontal anisotropy of 2.0 with a bearing of 354 degrees was ascribed. 

Covariance matrix construction was undertaken using the PPCOV_SVA utility supplied with the PEST 

Groundwater Data Utility suite; see Doherty (2014). 
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For all other parameter types except recharge and EVT multipliers, within-group statistical 

independence was assumed in filling the pertinent blocks of the C(k) matrix. A uniform standard 

deviation was applied to each member of the group. Details are provided in table 3.3. 

Parameter group name Standard deviation ascribed to each parameter 
within group 

vanis1 0.25 

vanis2 0.25 

vanis3 0.25 

vanis4 0.25 

vanis5 0.25 

vanis6 0.25 

vanis7 0.25 

lcm 1.0 

Rcm 0.6 

Sc 1.0 

lkzmul 0.6 

Table 3.3 Standard deviations assigned independently to each parameter within each respective parameter 
group. Note that these are actually applied to the log (to base 10) of each parameter for the purpose of 
linear analysis. 

As has already been discussed, a recharge rate multiplier parameter and an EVT rate multiplier 

parameter were assigned to each polygon depicted in figure 3.1. These parameters were assumed to 

be statistically independent of each other between polygons. However a high degree of negative 

correlation (-0.99) is assumed to exist between the recharge rate multiplier and the maximum EVT 

rate multiplier in each polygon. This reflects the fact that they are both calculated by the same HSPF 

model which is calibrated to reproduce baseflow, and that they can vary in opposite directions to 

produce the same average baseflow. Use of this correlation coefficient is equivalent to assuming 

that the recharge rate multiplier is equal to a random number plus a second random number whose 

standard deviation is about 10% of that of the first, while the EVT rate multiplier is equal to the same 

first random number minus a third random number which also has a standard deviation of 10% of 

that of this first random number. For the present study, the standard deviation of the first random 

number was chosen such that two standard deviations span a range in log space that is equivalent to 

multiplying and dividing the “calibrated” value of 1.0 for these recharge and EVT multiplier 

parameters by a factor of 1.25. A joint covariance matrix for recharge and EVT rate multipliers was 

constructed accordingly. 

3.3 Measurement Noise Covariance Matrix 

The C(ε) matrix featured in equations 2.3 and 2.4 is assumed to be diagonal. Diagonal elements were 

given values such that if a diagonal weight matrix Q is calculated as the inverse of the diagonal C(ε) 

matrix, then each observation-group-specific component of the objective function achieved through 

the calibration process is equal to the number of non-zero-weighted observations within the 

respective observation group. Meanwhile, relatively of weighting within each group as employed in 

the actual model calibration process was preserved for linear analysis, as this reflects the credibility 

of each observation as judged by those who built and calibrated the model. This manner of 

calculating C(ε) respects the fact that if weights are indeed awarded values which are the inverse 

square root of the standard deviation of measurement noise, then each weighted residual achieved 

through the calibration process is on average equal to 1.0. The expected value of the total objective 
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function, and of observation-group-specific components thereof, is thus equal to the total number of 

observations, or the number of observations comprising the group.  

This method of calculating C(ε) recognizes that one of the important roles played by the calibration 

process is quantification of the ability (or otherwise) of the model to fit different components of the 

calibration dataset. Reduction of pertinent weights to reflect a diminished ability on the part of the 

model to fit certain types of measurements provides implicit recognition of the structural defects of 

the model that are responsible for this diminished fit. Parameter and predictive uncertainties will 

rise accordingly. Unfortunately however, it does not recognize that, where misfit is cause by model 

structural defects, the resulting “structural noise” does not possess a diagonal covariance matrix; see 

Doherty and Welter (2010). In fact, as was discussed in the previous section, it is not really a 

statistical quantity at all. Sadly, this is almost impossible to take into account; furthermore, 

accommodation of misfit arising from model inadequacies is made all the more difficult because the 

covariance matrix of structural noise is, in fact, singular (Doherty and Welter, 2010), and hence does 

not possess an inverse from which an appropriate weighting strategy can emerge. 
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4. Some Parameter Outcomes 

4.1 General 

This subsection presents a few outcomes of linear analysis as they pertain to parameters.  

The outcomes of linear analysis presented in this section are not meant to be complete; they should 

be considered as samples only. A broader range of results can be readily provided based on the 

same Jacobian matrix (i.e. the Z matrix of equations 2.3 and 2.4) that was used to calculate the 

results presented herein. Alternatively, it may be better to postpone provision of a more complete 

set of linear analysis results as these pertain to estimated parameters until further model 

refinements have been undertaken, and/or until discussions with stakeholder groups indicate 

satisfaction with the manner in which the C(k) and C(ε) covariance matrices were constructed. 

4.2 Dimensions of Solution Space 

The PEST SUPCALC utility was used to estimate the dimensions of the calibration solution space. 

SUPCALC calculates a lower and an upper limit for this quantity. The lower limit coincides with the 

point at which “overfitting” may occur. This is the point at which reductions in parameter 

uncertainties accrued through improved matching of model outputs to observations are more than 

offset by increases in the potential for parameter error born of amplification of measurement noise 

as values are inferred for parameters through solution of the inverse problem of model calibration. 

The upper limit of solution space dimensionality provided by SUPCALC is the point at which not only 

measurement noise, but numerical noise associated with solution of the inverse problem, can 

contribute significantly to errors in estimated parameters. 

SUPCALC-calculated lower and upper limits for the dimensionality of the calibration solution space 

are 1123 and 1429 respectively. As has already been discussed, this implies that the calibration 

dataset contains between 1123 and 1429 useable items of information. Each such item allows 

unique estimation (albeit with uncertainty arising from measurement/structural noise) of a single 

linear combination of parameters. These linear combinations are specified by the orthogonal vectors 

comprising the columns of the matrix V1 of equation 2.6.  

The calibration null space is the orthogonal complement of the calibration solution space. This is 

spanned by orthogonal combinations of parameters (specified as the columns of the V2 matrix of 

equation 2.6) that are completely inestimable on the basis of the calibration dataset, or are 

estimable only with unacceptable propensity for error forthcoming from the presence of 

measurement/structural noise in the calibration dataset. For the NFSEG model, the dimensions of 

the null space are between 7371 and 7677; the solution space and null space dimensions must add 

to the total dimensionality of parameter space, this being 8800 in the present case.  

It is important to note that the uncertainties of predictions that are sensitive only to combinations of 

parameters that lie entirely within the calibration null space are not reduced through the history-

matching process, regardless of how good a fit is achieved between model outputs and 

measurements comprising the calibration dataset. 
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4.3 Parameter Identifiabilities 

Doherty and Hunt (2009) define the identifiability of a parameter as the square of the cosine of the 

angle between a parameter and its projection onto the calibration solution space. This ranges 

between zero and one. If a parameter has an identifiability of zero, then no model output that is 

employed in the calibration process is sensitive to that parameter. If a parameter has an 

identifiability of one, then it is uniquely estimable on the basis of the calibration dataset. Its 

estimation will be accompanied by uncertainty; however this uncertainty arises only from 

contamination of the calibration dataset by measurement/structural noise, and not from a deficit of 

information in the calibration dataset.  

If a parameter has an identifiability that is between zero and one, this indicates that information 

pertinent to that parameter resident in the calibration dataset is shared between this parameter and 

at least one other parameter. Because the parameter has a non-zero projection onto the calibration 

null space, it cannot be estimated uniquely.  

Figure 4.1a maps the identifiability of k3x parameters; also depicted in this figure are the pilot points 

with which these parameters are associated. Figure 4.1b shows k3x parameter identifiabilities 

together with layer 3 observation wells. Unsurprisingly, identifiabilities are highest where 

observation data density is greatest. 
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Figure 4.1a Identifiabilities of k3x parameters together with k3x pilot points. 
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Figure 4.1b Identifiabilities of k3x parameters together with observation wells in layer 3; see figure 4.1a for 
colour scale. 

 Identifiabilities of recharge multiplier parameters are mapped in figure 4.2. 
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Figure 4.2 Identifiabilities of recharge multiplier parameters together with observation wells in layer 3. 

In areas of small parameter identifiability, parameters are relatively uninformed by the calibration 

dataset, and hence retain their prior uncertainties. Knowledge from outside of the calibration 

process must form the basis for parameter value assignment in these areas. 

4.4 Relative Parameter Uncertainty Variance Reduction 

Like identifiability, the relative uncertainty variance reduction of a parameter is a number between 

zero and one. For the i’th parameter it is calculated as: 
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         (4.1) 

where 

 σ2
ip is the prior uncertainty variance of parameter i; and 

 σ2
ic is the posterior (i.e. post-calibration) uncertainty variance of parameter i. 

Prior and posterior parameter uncertainty variances are calculated using equation 2.3 or 2.4 with y 

in these equations tailored to a specific parameter in the manner discussed above. This statistic 

takes more explicit account of the presence of measurement/structural noise in the calibration 

dataset than does identifiability; it also takes greater account of prior parameter spatial correlation 

expressed in the C(k) matrix. 

Maps of relative parameter uncertainty variance reduction for k3x and recharge multiplier 

parameters are presented in figures 4.3 and 4.4.  
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Figure 4.3a Relative uncertainty variance reduction of k3x parameters together with pilot points associated 
with these parameters. 
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Figure 4.3b Relative parameter uncertainty variance reduction of k3x parameters together with observation 
wells in layer 3; see figure 4.3a for colour scale. 
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Figure 4.4 Relative parameter uncertainty variance reduction of recharge multiplier parameters together 
with observation wells in layer 3. 
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5. Some Predictive Outcomes 

5.1 General 

This section examines the uncertainties associated with a number of predictions made by the NFSEG 

model. For making these predictions, pumping within the North Florida water supply planning region 

was set to rates projected to occur 2035, while in the rest of the model domain pumping was 

assumed to be the same as in 2009. Recharge was assumed to be the same in both 2009 and 2035.  

All of the predictions considered in this report have measured counterparts in one or both of 2001 

and 2009 which are featured in the model calibration dataset. It is a general rule of model usage that 

uncertainties associated with predictions that resemble in place and nature observations comprising 

the calibration dataset possess less post-calibration uncertainty than those that have no 

counterparts in the calibration dataset. Furthermore, their uncertainties are likely to be determined 

more by noise in the calibration dataset then by lack of information in the calibration dataset; that 

is, they are determined more by C(ε) than by C(k). 

This section also reports the outcomes of ancillary linear analyses conducted for two predictions. 

These analyses yield parameter contributions to predictive uncertainty and the information content 

of different subsets of the calibration dataset as it pertains to these predictions. 

As for the previous section, the results presented herein are representative only. Analyses that give 

rise to these results can be readily extended to other predictions. Contributions to predictive 

uncertainty by different groupings of parameters, or by individual parameters, can be readily 

calculated. Similarly, the information content of different groupings of observations, or of individual 

observations (including, as has already been discussed, observations which have not as yet been 

made) can also be explored. 

5.2 Predictive Uncertainties 

Table 5.2 lists pre- and post-calibration uncertainty variances and standard deviations (variance is 

the square of standard deviation) for a number of predictions of management interest calculated 

using equation 2.3. Table 5.1 identifies these predictions. Note that the names used for these 

predictions correspond to observed counterparts in 2009, the latter forming part of the calibration 

dataset. 

Prediction name Description 

w00202_09 UFA observation well near Lake Brooklyn 

w00258_09 UFA observation well near Lake Geneva 

w00878_09 UFA observation well near Putnam County MFL lakes 

qr09_2319500 Baseflow pickup in reach upstream of the Suwannee River near Ellaville, Florida 

qr09_2320700 Baseflow to the Santa Fe River near Graham, Florida 

qr09_2323500 Baseflow pickup in reach upstream of the Suwannee River near Wilcox, Florida 

qr09_2324000 Baseflow to the Steinhatchee River near Cross City, Florida 

qr09_2326000 Baseflow to the Econfina River near Perry, Florida 

qr09_2326550 Baseflow pickup in the reach upstream of the Aucilla River near Nutall Rise,  

qspring09_s121610002 Blue Spring near Bronson 

qspring09_s101429027 Little Fanning Springs near Fanning Spring 
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qspring09_s101429001 Fanning Springs near Wilcox 

qspring09_n011117008 Madison Blue Spring near Blue Springs 

qr09_lsf_sprgrp Lower Santa Fe Springs Group 

qr09_iche_sprgrp Ichetucknee Springs Group 

qr09_wacissa_sprgrp Wacissa Springs Groups 

qr09_silver_sprgrp Silver Springs Group 

qs09_2315500 Baseflow to the Suwannee River near White Springs, Florida 

qs09_2317620 Baseflow to the Alapaha River near Jennings, Florida 

qs09_2319000 Baseflow to the Withlacoochee River near Pinetta 

qs09_2320500 Baseflow to the Suwannee River near Branford, Florida 

qs09_2321500 Baseflow to the Santa Fe River near Worthington Springs 

qs09_2322500 Baseflow to the Santa Fe River near Fort White 

Table 5.1 Names of predictions featured in this section. 

Prediction 
Modelled 
value 

Pre-
calibration 
variance 

Post-
calibration 
variance 

Pre-calibration 
std dev 

Post-calibration 
std dev 

w00202_09 77.0313 196.9804 0.9583 14.0350 0.9790 

w00258_09 75.7702 215.1865 1.3180 14.6692 1.1481 

w00878_09 28.3804 34.1637 0.9218 5.8450 0.9601 

qr09_2319500 -853.1482 135237.1000 12735.7200 367.7459 112.8527 

qr09_2320700 -4.6485 10.7651 0.6726 3.2810 0.8201 

qr09_2323500 -343.1368 11145.7900 634.8607 105.5736 25.1964 

qr09_2324000 -78.7990 8360.8590 2006.6430 91.4377 44.7956 

qr09_2326000 -65.0888 864.3049 321.6057 29.3991 17.9334 

qr09_2326550 -695.6051 259435.4000 386.9768 509.3480 19.6717 

qspring09_s121610002 -2.8528 23.8719 0.2567 4.8859 0.5067 

qspring09_s101429027 0.0218 0.0025 0.0025 0.0503 0.0503 

qspring09_s101429001 -64.0665 3050.6520 72.4080 55.2327 8.5093 

qspring09_n011117008 -103.3659 14328.3200 15.4598 119.7010 3.9319 

qr09_lsf_sprgrp -730.1142 82023.9900 1453.0130 286.3983 38.1184 

qr09_iche_sprgrp -242.7187 13918.4300 306.3752 117.9764 17.5036 

qr09_wacissa_sprgrp -521.8089 183672.7000 244.2470 428.5706 15.6284 

qr09_silver_sprgrp -474.2603 71803.8700 714.6787 267.9624 26.7335 

qs09_2315500 -2.1171 993.6093 492.8851 31.5216 22.2010 

qs09_2317620 -1106.8150 52990.1000 4909.4280 230.1958 70.0673 

qs09_2319000 -1078.8640 96024.9500 6404.1510 309.8789 80.0259 

qs09_2320500 -4001.6930 474455.0000 23073.2300 688.8070 151.8987 

qs09_2321500 -35.8504 695.9704 72.8482 26.3813 8.5351 

qs09_2322500 -653.2566 29968.5400 1700.9140 173.1143 41.2421 

Table 5.2 Pre- and post-calibration uncertainty variances and standard deviations for selected predictions. 

An outcome of the linearity assumption that underpins use of equations 2.3 and 2.4 is that 

sometimes a calculated uncertainty standard deviation may imply a predictive value that falls 

outside of its realistic range. This applies particular to predictions of spring flow which, generally 

speaking, cannot change sign. Where a model prediction is such that its behaviour changes abruptly 
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at a certain threshold (for example where the piezometric surface falls below the ground surface at 

the site of a particular spring), then the assumption of model linearity with respect to this prediction 

is obviously violated. Predictive uncertainty intervals implied by linear standard deviations must 

therefore be reduced to forestall implications of impossible system behaviour. In circumstances such 

as these, one side of a predictive uncertainty interval inferred through linear analysis remains intact 

while the other side must be contracted. 

The role of structural defects in contributing to the uncertainties of model predictions was discussed 

in section 2.3.4. As was stated in that section, these should be recognized through addition of a 

“predictive noise” term to predictive uncertainty intervals calculated using equations 2.3 and 2.4. 

For the predictions listed in table 5.2 this requires a (probably subjective) assessment of the 

magnitude of model-to-measurement misfit experienced during the calibration process for the 2001 

and 2009 counterparts to these predictions. This is beyond the scope of the present study, and 

hence was not carried out. Furthermore, the use of predictive differences rather than predictive 

absolutes as a basis for model-based decision-making (see the next section) should reduce the size 

of this term considerably. It should be noted, however, that despite the absence of this term in 

equations used for calculation of the predictive uncertainties listed in table 5.2, account is taken of 

calibration residuals as they pertain to different observation types in construction of the C(ε) matrix 

that is used in these equations; see section 3.3. 

5.3 Parameter Contributions to Predictive Uncertainty 

Figures 5.1 and 5.2 depict contributions made by different parameter groups to the uncertainty 

variances of two 2035 predictions. In each of these figures, the back row depicts pre-calibration 

contributions to predictive uncertainty while the front row depicts post-calibration contributions to 

predictive uncertainty. The effect of the calibration process in reducing predictive uncertainty is 

obvious from these figures. 

 

Figure 5.1 Contributions made by different parameter groups to the uncertainty variance of prediction 
qspring09_s12161002. Pre- and post-calibration predictive variances are 23.87 (ft/day)2 and 0.257 (ft/day)2 

respectively. 
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Figure 5.2 Contributions made by different parameter groups to the uncertainty variance of prediction 
qs09_2322500. Pre- and post-calibration predictive variances are 29968 (ft/day)2 and 1701 (ft/day)2 

respectively. 

5.4 Observation Worth 

Equations 2.3 and 2.4 were employed to evaluate the worth with respect to two predictions of each 

of the observation groups featured in table 3.2. As has already been discussed, in the present study 

data worth is assessed in two ways. In the first of these ways, members of the observation group 

whose worth is being assessed comprise the entirety of the calibration dataset. Reduction in the 

uncertainty variance of a prediction from its pre-calibration level is then calculated. This constitutes 

one measure of the worth of that observation group with respect to that prediction. A second option 

is to remove the observation group from the full calibration dataset, leaving the rest of the 

calibration dataset intact. The resulting increase in uncertainty variance of a prediction above its 

post-calibration level constitutes a second measure of the worth of that observation group. This 

measure quantifies uniqueness of the information content of the observation group with respect to 

that prediction. 

Both of these analyses were carried out for each of the predictions that have already been discussed 

in this section, namely predictions qspring09_s12161002 and qs09_2322500 (both pertaining to 

2035 conditions). See figures 5.3 and 5.4. 
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Figure 5.3a Decrease in the uncertainty variance of prediction qspring09_s12161002 from its pre-calibration 
value of 23.87 (ft/day)2 accrued if each observation group comprises the entirety of the calibration dataset. 

 

Figure 5.3b Increase in the uncertainty variance of prediction qspring09_s12161002 from its post-calibration 
value of 0.257 (ft/day)2 incurred if each observation group is removed from the calibration dataset. 
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Figure 5.4a Decrease in the uncertainty variance of prediction qs09_2322500 from its pre-calibration value 
of 29968 (ft/day)2 accrued if each observation group comprises the entirety of the calibration dataset. 

 

Figure 5.4b Increase in the uncertainty variance of prediction qs09_2322500 from its post-calibration value 
of 1701 (ft/day)2 incurred if each observation group is removed from the calibration dataset. 

It is apparent from the above figures, and from those provided in the previous subsection, that 

observations which are similar in nature to a prediction contain unique information pertaining to 

that prediction. Where the prediction is flow from a spring, this is an outcome of that observation’s 

ability to inform the conductance of the boundary condition that governs changes in the amount of 

water that flows from the spring in response to changes in groundwater head. However other 

parameters also influence where and how much water emerges from the groundwater system from 

springs and rivers. In particular, regional hydraulic conductivity parameters influence the direction of 

groundwater flow, and hence the locations of its emergence. During the history-matching process, 

hydraulic conductivities are illuminated by a number of different types of observations, including 

measured heads and head differences. 
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6. Some Predictive Difference Outcomes 

6.1 General 

It is generally accepted that models are better at predicting changes than absolutes. Defects in their 

construction arising from their simplified numerical representation of complex environmental 

processes can inculcate consistent biases in various model predictions. Defect-induced biases of this 

type will often “cancel out” as the value of a prediction pertaining to one simulation time is 

subtracted from its value at another simulation time in order to predict the change in system 

behaviour precipitated by alterations to human management of that system. For the same reason, 

the use of predictive differences can also ameliorate the effects of erroneous parameter values, or 

of parameterization devices that do not accurately represent the nature of hydraulic property 

heterogeneity within a system. Values ascribed to such parameters during the calibration process 

often reflect the surrogate roles that they must play in order to compensate for unavoidable model 

simplification if a good fit between model outputs and historical system behaviour is to be attained. 

For the above reasons, model-based environmental management can often benefit from a reliance 

on predictive differences rather than on predictive absolutes for formulation of management policy, 

and for implementation of management strategies arising from that policy.  

Unfortunately, the use of linear methods to quantify an improvement of a model’s ability to predict 

changes rather than absolutes is hampered by the fact that finite-difference calculation of the 

predictive sensitivity vector (i.e. the y vector of equation 2.2) is degraded where sensitivities are 

calculated for model output differences. This occurs because differences must then be taken of 

model-calculated differences. Loss of leading significant figures is incurred at each differencing 

stage. For the NFSEG model, this problem is compounded by solver convergence issues associated 

with use of the MNW2 package.  

This problem is exacerbated by the fact that the values of predictive differences are generally much 

smaller than the values of predictions themselves. The numerical smallness of management-salient 

quantities that then become the focus of uncertainty quantification requires that calculations 

undertaken at all stages of the uncertainty quantification process be as precise as possible. Errors in 

the Z matrix featured in equations 2.3 and 2.4 arising from problematic solver convergence under 

calibration conditions can thus contribute to errors in quantification of predictive uncertainty where 

predictions of interest are model output differences. 

The present section examines the uncertainties associated with a number of differences in model 

outputs between 2009 and 2035 arising from alterations to pumping over that period. As will be 

discussed, these uncertainties are explored in two ways – firstly through standard linear analysis 

based on equations 2.3 and 2.4, and secondly through direct evaluation of predictive differences 

based on models runs undertaken using parameter sets calculated using equation 2.5. The latter 

method was employed for the first time in this study. 

6.2 Predictive Differences through Direct Linear Analysis 

Table 6.1 lists the same predictions as does table 5.2; the predictions are described in table 5.1. Pre- 

and post-calibration uncertainty variances associated with differences in model outputs between 

2009 and 2035 are listed in columns 3 to 6 of table 6.1. The values of the predictive differences 
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themselves are listed in column 2. Predictive difference uncertainty calculations were carried out 

using equation 2.3, with the y vector in each case encapsulating the sensitivities of the pertinent 

predictive difference to parameters employed by the NFSEG model. 

Predictive difference 
Modelled 
value 

Pre-
calibration 
variance 

Post-
calibration 
variance 

Pre-calibration 
std dev 

Post-calibration 
std dev 

w00202_09 -1.3383 0.2893 0.0539 0.5379 0.2322 

w00258_09 -1.3206 0.3830 0.0880 0.6189 0.2967 

w00878_09 1.2176 1.0274 0.0604 1.0136 0.2459 

qr09_2319500 49.2268 1458.5180 278.2862 38.1906 16.6819 

qr09_2320700 0.0110 0.0049 0.0036 0.0697 0.0601 

qr09_2323500 6.8752 1258.7760 396.4176 35.4792 19.9102 

qr09_2324000 -0.0154 192.9498 144.3981 13.8906 12.0166 

qr09_2326000 0.1290 0.1500 0.0357 0.3873 0.1889 

qr09_2326550 0.1105 499.9878 172.9847 22.3604 13.1524 

qspring09_s121610002 0.0545 0.4491 0.1421 0.6702 0.3769 

qspring09_s101429027 0.0000 0.0000 0.0000 0.0001 0.0001 

qspring09_s101429001 1.0914 38.7342 23.8690 6.2237 4.8856 

qspring09_n011117008 0.6568 21.8880 4.5077 4.6785 2.1231 

qr09_lsf_sprgrp 10.5886 5450.0760 1333.9000 73.8246 36.5226 

qr09_iche_sprgrp 12.8240 486.5039 235.8756 22.0568 15.3582 

qr09_wacissa_sprgrp 0.0606 407.8221 141.1818 20.1946 11.8820 

qr09_silver_sprgrp 1.1722 6775.8200 677.4674 82.3154 26.0282 

qs09_2315500 0.1182 0.0632 0.0298 0.2514 0.1726 

qs09_2317620 0.0540 0.1252 0.1147 0.3539 0.3386 

qs09_2319000 3.8130 47.7346 10.6169 6.9090 3.2584 

qs09_2320500 65.3840 2749.0020 400.2897 52.4309 20.0072 

qs09_2321500 0.1455 0.5582 0.4184 0.7472 0.6468 

qs09_2322500 23.6933 3379.7580 1190.6590 58.1357 34.5059 

Table 6.1 Pre- and post-calibration variances and standard deviations of uncertainty for selected predictive 
differences. 

A comparison of table 6.1 with table 5.2 reveals that while the uncertainties associated with many 

predictive differences are smaller than those associated with their absolute counterparts, the 

uncertainties of others have not been reduced by much. See for example predictions 

qspring09_s12161002 and qs09_2322500 which were discussed in detail in the previous section. 

Figures 6.1 to 6.4 show parameter contributions to the uncertainties of these predictive differences, 

and the worth of different observation types with respect to these predictive differences. 
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Figure 6.1 Contributions made by different parameter groups to the uncertainty variance of predictive 
differences for qspring09_s12161002. Pre- and post-calibration predictive difference variances are 0.449 
(ft/day)2 and 0.142 (ft/day)2 respectively. 

 

Figure 6.2 Contributions made by different parameter groups to the uncertainty variance of predictive 
differences for qs09_2322500. Pre- and post-calibration predictive difference variances are 3380 (ft/day)2 
and 1191 (ft/day)2 respectively. 
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Figure 6.3a Decrease in the uncertainty variance of predictive difference qspring09_s12161002 from its pre-
calibration value of 0.449 (ft/day)2 accrued if each observation group comprises the entirety of the 
calibration dataset. 

 

Figure 6.3b Increase in the uncertainty variance of predictive difference qspring09_s12161002 from its post-
calibration value of 0.142 (ft/day)2 incurred if each observation group is removed from the calibration 
dataset. 
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Figure 6.4a Decrease in the uncertainty variance of predictive difference qs09_2322500 from its pre-
calibration value of 3380 (ft/day)2 accrued if each observation group comprises the entirety of the 
calibration dataset. 

 

Figure 6.4b Increase in the uncertainty variance of predictive difference qs09_2322500 from its post-
calibration value of 1191 (ft/day)2 incurred if each observation group is removed from the calibration 
dataset. 
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of those same parameter groups to the prediction’s uncertainty. This is an outcome of the definition 

of “contribution to predictive uncertainty”. Recall from section 2 of this report that this is defined as 

the decrease in predictive uncertainty accrued through acquisition of perfect knowledge of the 

parameter group in question. A prediction may not be sensitive to any member of a particular 

parameter group. However it may be sensitive to other parameters with which members of the 

same parameter group are highly correlated in the post-calibration context due to sharing of 
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information may pertain to a combination of parameters rather than to parameters individually. 

Suppose that a prediction is sensitive to parameter A but not to parameter B. Suppose also that 

parameters A and B show a high degree of post-calibration correlation. Acquisition of knowledge of 

parameter B therefore reduces the post-calibration uncertainty of parameter A, and with it the post-

calibration uncertainty of any prediction that is sensitive to parameter A, even if that prediction is 

not sensitive to parameter B. 

The graphs presented so far in this section (which pertain to predictive differences) are somewhat 

different in character from their counterparts in the previous section (which pertain to predictive 

absolutes), particularly those pertaining to observation worth. Some of this may, of course, be 

attributable to corruption of sensitivities by double finite differencing, a matter which is explored 

below. However even if this is the case, it does not necessarily follow that assessments of parameter 

contributions to predictive uncertainty, and assessments of data worth in relation to specific 

predictions, are entirely corrupted as a consequence. Problematical finite-difference derivatives 

calculation may indeed promulgate errors in a number of bars featured in the charts presented 

above; however other aspects of these plots probably retain integrity. If this is the case, then the 

importance of hydraulic conductivity parameters in figures 6.1 and 6.2, and of data types that 

support estimation of hydraulic conductivity parameters in figures 6.3 and 6.4, suggest that 

uncertainties associated with groundwater outflow predictive differences arises more from local 

nuances in directions of groundwater flow than from uncertainties in gross controlling mechanisms 

such as the conductances of groundwater outflow boundaries. 

6.3 Predictive Difference Uncertainties: Further Examination 

As stated above, the uncertainties associated with some predictive differences listed in table 6.1 are 

suspiciously high. To explore the integrity of these uncertainties, the following methodology was 

adopted. 

 For a number of predictions featured in table 6.1, δk was calculated using equation 2.5, 

together with the pertinent predictive difference standard deviations listed in that table. 

 Two parameter sets were created, these deviating from the calibrated parameter set by 

±δk. 

 The model was run under both calibration and predictive conditions using these parameter 

sets, together with the parameter set k pertaining to the calibration model. Because of 

convergence difficulties, the model was run multiple times with updated initial heads to 

ensure model solver convergence under each scenario.  

 Differences in model predictions made using the calibrated parameter set k, and the 

parameter set k-δk on the one hand and k+δk on the other hand, were used to assess the 

predictive difference uncertainty interval. 

 Meanwhile, it was verified that the calibration objective functions calculated using both the 

k-δk and k+δk parameter sets differ by only a small amount from that calculated using the k 

parameter set.  

Objective function components obtained using the k parameter set, as well as those calculated 

using the k-δk and k+δk parameter sets with δk tuned to specified predictions, are listed in tables 

6.2a and 6.2b. In most cases, the addition or subtraction of δk to/from the calibrated parameter set 

makes little difference to the objective function and to all of its components. In some cases, 
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however, there are differences, especially to objective function components that pertain to flow. 

This is almost certainly an outcome of solver convergence difficulties. 

 calibration w00202_09 w00202_09 w00878_09 w00878_09 qr09_iche_sprgrp qr09_iche_sprgrp 

Objective 
function 
components k k-δk k+δk k-δk k+δk k-δk k+δk 

total 5712.8 6267.2 6053.4 5753.9 5734.2 6168.3 5921.5 

h2001_lay1 227.99 232.1 226.01 227.32 229.85 228.44 227.59 

h2001_lay2 95.987 97.104 95.505 96.212 95.823 96.109 95.879 

h2001_lay3 976.61 1009.4 957.29 990.48 967.49 979.93 974.24 

h2001_lay4 12.987 13.129 12.858 13.065 12.923 12.956 13.019 

h2001_lay5 39.001 39.745 38.9 38.848 39.193 39.115 38.937 

h2001_lay7 1.9947 2.0314 1.9667 2.0239 1.9709 1.9943 1.9956 

h2009_lay1 238.94 240.46 237.84 234.42 244.04 239.51 238.44 

h2009_lay2 110.98 111.49 110.62 111.11 110.88 111.13 110.84 

h2009_lay3 992.3 997.03 1002.3 987.31 1000.9 993.3 991.71 

h2009_lay4 10.006 10.037 10.009 9.9537 10.069 9.9948 10.018 

h2009_lay5 41.026 41.337 41.093 40.889 41.183 41.108 40.969 

h2009_lay7 2.0185 1.9175 2.129 1.9423 2.0928 2.0157 2.0202 

hd2001_lay3 288.96 292.75 286.77 287.84 290.5 290.93 287.45 

hd2009_lay3 262.99 265.62 261.36 263.46 262.69 263.5 262.68 

td_lay1 0 0 0 0 0 0 0 

td_lay2 0 0 0 0 0 0 0 

td_lay3 639.29 640.11 638.89 639.89 639.68 638.31 640.33 

td_lay4 0 0 0 0 0 0 0 

td_lay5 34.027 34.111 33.953 34.056 34.011 34.023 34.035 

td_lay7 0 0 0 0 0 0 0 

wp_wet_2001 231.17 228.53 240.92 226.72 237.71 230.97 231.53 

wp_wet_2009 36.005 35.946 36.113 35.961 36.113 36.006 36.004 

vd_1to3 91.583 579.7 428.38 93.855 89.818 529.21 288 

vd_3to5 85.002 85.093 84.902 84.999 85.002 87.262 83.342 

qr01 374.03 375.61 372.66 376.38 375.5 376.38 380.81 

qr09 375.93 379.02 373.12 377.3 381.62 374.52 385.21 

qspring01 7.0077 6.1279 8.0224 6.7343 7.3146 12.002 6.6449 

qspring09 6.9885 7.4952 6.6231 7.5335 6.4628 8.6893 10.515 

qs_spring01 10 10.002 10.009 9.9898 10.011 9.97 10.042 

qs_spring09 5.9983 6.0493 5.9466 6.0177 5.9792 5.998 5.9979 

qs01 257.06 261.75 268.33 305.99 239.85 256.25 258.14 

qs09       256.92 263.5 260.89 243.65 275.45 258.72 255.44 

Table 6.2a Objective function components calculated when varying parameters to explore predictive 
difference uncertainty margins – part A. 
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qs09_2320500 qs09_2320500 qs09_2321500 qs09_2321500 qs09_2322500 qs09_2322500 

Objective 
function 
components k-δk k+δk k-δk k+δk k-δk k+δk 

Total 5720.00 5717.20 7300.80 7324.20 5763.80 5757.60 

h2001_lay1 228.07 227.9 228.18 227.8 226.41 229.73 

h2001_lay2 96.049 95.925 96.302 95.605 95.663 96.324 

h2001_lay3 987.03 967.56 977.04 976.29 979.76 977.33 

h2001_lay4 13.057 12.92 12.988 12.987 12.693 13.26 

h2001_lay5 39 39.026 39.018 38.983 37.175 40.91 

h2001_lay7 2.02 1.9722 1.995 1.9946 2.0104 1.9812 

h2009_lay1 239.19 238.68 239.42 238.47 238.7 239.48 

h2009_lay2 111.01 110.95 111.37 110.51 110.74 111.24 

h2009_lay3 986.9 999.12 992.45 992.13 992.45 996.12 

h2009_lay4 9.9869 10.031 10.006 10.006 9.8461 10.161 

h2009_lay5 40.941 41.125 41.035 41.016 40.245 41.871 

h2009_lay7 1.9656 2.0742 2.0175 2.0194 1.9887 2.0448 

hd2001_lay3 288.55 289.41 289.02 288.91 287.26 291.43 

hd2009_lay3 263.31 262.71 263.02 262.96 263.26 263.06 

td_lay1 0 0 0 0 0 0 

td_lay2 0 0 0 0 0 0 

td_lay3 640 638.78 639.25 639.36 639.1 639.53 

td_lay4 0 0 0 0 0 0 

td_lay5 34.088 33.977 34.028 34.028 34.023 34.037 

td_lay7 0 0 0 0 0 0 

wp_wet_2001 230.72 231.71 231.26 231.07 233.12 229.76 

wp_wet_2009 35.964 36.053 36.006 36.004 35.919 36.368 

vd_1to3 91.61 92.134 1675.9 1706.9 99.035 116.31 

vd_3to5 83.625 87.014 86.657 82.978 84.802 85.407 

qr01 377.68 373.9 373.97 374.09 386.34 371.92 

qr09 375.34 379.73 375.69 376.17 402.85 359.99 

qspring01 7.2425 6.8252 7.07E+00 6.9504 2.484 24.801 

qspring09 6.7754 7.2456 6.9743 7.0039 17.666 11.477 

qs_spring01 10.029 9.973 10.021 9.9782 10.339 10.136 

qs_spring09 5.992 6.0009 6.0027 5.9934 6.0176 5.974 

qs01 255.82 258.48 257.11 257.04 255.26 260.17 

qs09       258.01 255.95 256.93 256.93 258.68 256.79 

Table 6.2b Objective function components calculated when varying parameters to explore predictive 
difference uncertainty margins – part B. 

Table 6.3 shows the outcomes of predictive model runs undertaken to assess predictive difference 

uncertainty intervals. 
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Prediction 

Value of 
prediction 
calculated using k 

Value of predictive 
change from 2009 
to 2035 calculated 
using k 

Value of predictive 
change from 2009 to 
2035 calculated using 
k-δk 

Value of predictive 
change from 2009 to 
2035 calculated using 
k+δk 

w00202_091 78.37 1.3383 1.2311 1.4223 

w00878_091 27.16 -1.2176 -1.4508 -0.9865 

qr09_iche_sprgrp2 -255.54 -12.8240 -13.1784 -12.4925 

qs09_23205002 -4067.08 -65.3840 -65.4740 -63.9390 

qs09_23215002 -36.00 -0.1455 -0.1453 -0.1440 

qs09_23225002 -676.95 -23.6933 -24.3685 -22.9294 
1Values are in feet. Positive predictive changes mean drawdown. 
2Values are in cubic feet per second. Negative predictive changes mean reduction in flows. 

Table 6.3 Predictive difference uncertainty intervals obtained by direct running of the NFSEG model. 

Predictive difference uncertainty standard deviations implied by the last two columns of table 6.3 

are significantly smaller than those presented in table 6.1, especially for groundwater outflow 

predictions. This, together with the unexpectedly large uncertainty values featured in table 6.1, 

suggests that the uncertainty intervals listed in table 6.3 are better approximations to the true 

uncertainty intervals of these predictive differences than those forthcoming from table 6.1. It could 

be argued, however, that calculation of δk using equation 2.5 may itself be corrupted by the same 

numerical problems as those that beset calculation of σ2
s using equation 2.3 or 2.4, and that this may 

invalidate the predictive difference intervals provided in table 6.3. It is nevertheless suggested, 

however, that the estimates of predictive difference uncertainty listed in table 6.3 are improvements 

over those listed in table 6.1 because their calculation involves running of the model, and does not 

rely completely on the integrity of sensitivity vectors and matrices. 

If nothing else, the above analyses demonstrate that evaluation of the uncertainties of predictive 

differences is a numerically difficult procedure. Two possible alternatives to the linear methodology 

pursued herein are as follows. 

 Calibration-constrained Monte Carlo methods such as the Null Space Monte Carlo (NSMC) 

methodology supported by PEST could be employed. A problem with the NSMC method 

however is that, while being numerically efficient when compared to other methods used 

for post-calibration uncertainty analysis in highly parameterized contexts, its numerical 

burden is nevertheless very high. Furthermore, for the NFSEG model, time-consuming 

manual intervention may be required to ensure that each parameter field emerging from 

the NSMC process is valid according to a suite of pertinent metrics (see Sepulveda and 

Doherty, 2014). 

 A far cheaper, but still somewhat approximate, methodology based on equation 2.5 could be 

employed whereby a line search is undertaken along the direction of the predictive 

sensitivity vector. In undertaking this line search, the prediction of interest would be 

maximized or minimized subject to the constraint that the calibration objective function 

remains below a user-specified threshold. 

As a partial assessment of the credibility of predictive difference uncertainty figures presented in 

table 6.3, absolute (rather than differential) predictions listed in table 6.1 were calculated using the 

calibrated parameter set k, as well as the k+δk and k-δk parameter sets pertinent to each respective 

predictive difference. While the δk parameter fields are pertinent to predictive differences rather 
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than to predictive absolutes, use of these parameter fields to make absolute predictions can be 

expected to expose at least some of the uncertainties associated with them. Table 6.4 shows the 

outcomes of these calculations. The second column lists the average absolute alteration to the 

pertinent prediction as made by the calibrated model that is incurred when altering the calibrated 

parameter field by δk, and then –δk, to make the same prediction. The post-calibration standard 

deviation calculated for the uncertainty of each of these predictions (taken from table 5.2) fills the 

final column of table 6.4. Agreement between the two columns is not unreasonable. 

Prediction 
Average predictive difference 
calculated using k-δk and k+δk 

Standard deviation of 
prediction from table 5.2 

w00202_09 2.3281 0.9790 

w00878_09 1.20885 0.9601 

qr09_iche_sprgrp 21.086 17.5036 

qs09_2320500 63.98 151.8987 

qs09_2321500 0.689 8.5351 

qs09_2322500 34.712 41.2421 

Table 6.4 Comparison between approximate predictive uncertainties calculated using parameter fields 
geared toward exploration of predictive difference uncertainties, and predictive difference standard 
deviations computed using linear analysis. 

6.4 Predictive Noise 

This section has focussed on examining the uncertainties associated with the ability of a calibrated 

model to predict changes in the state of a system resulting from changes in the way that the system 

is managed. Results presented above suggest that where these predictions are similar in nature and 

location to those at which measurements were made for use in the calibration process, then the 

uncertainties associated with these predictive differences are very small. A similar conclusion was 

reached by Sepulveda and Doherty (2014). However these authors based their analyses on the 

considerably more expensive (because it is nonlinear) null space Monte Carlo methodology.  

The uncertainty intervals that are quantified in the present section using linear and semi-linear 

methods are reflective of parameter uncertainty only. No predictive noise term has been included in 

these analyses. In accordance with concepts presented in section 2.3.4 of this document, these can 

thus be classified as “uncertainty intervals” rather than “predictive intervals”. For predictions 

considered in the present section, failure to consider predictive noise is a less serious omission than 

for predictions considered in the previous section, as simplification-induced errors in model 

predictions are likely to largely cancel where differences are taken between model outputs 

calculated for different times at the same location. Furthermore, as was discussed in the previous 

section, assessment of the effect of model defects on the uncertainties associated with specific 

model predictions is likely to be fraught with difficulty. While indicators of the magnitude of 

predictive noise may be gained from an inspection of residuals incurred for model outputs of similar 

type and location employed in the calibration process, it is a difficult matter to translate these 

indicators into useable estimates of predictive noise in characterization of predictive difference 

uncertainty. 

It is therefore, in a way, inconvenient that the above analyses suggest that model predictive 

uncertainty intervals are very small for the model predictive differences that were considered in 

these analyses. It follows that if residuals for calibration counterparts to model outputs used in the 
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differencing process are considerably higher than these uncertainties, and if the structural noise 

whose existence these residuals suggest does not quite cancel though differencing, then this 

uncancelled model error will constitute the principle source of uncertainty for these particular 

predictive differences. Sadly, the magnitude of this possible error cannot be quantified.  
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7. Conclusions 
Linear predictive uncertainty analysis has been applied to calculation of the uncertainties associated 

with some predictions made by the NFSEG model. These predictions include both the values of 

heads and groundwater outflows, as well as alterations to these heads and outflows following 

alterations to pumping. Linear analysis appears to perform well when assessing the former types of 

predictions. Its performance appears to be poor, however, when assessing uncertainties associated 

with the latter types of predictions. Problems in using linear analysis in conjunction with predictive 

differences probably have their roots in numerical contamination of finite-difference derivatives 

which form the centrepiece of linear uncertainty analysis; where calculation of values for predictions 

requires that one model output be subtracted from another, differences of model output 

differences must be taken in formulation of these derivatives.  

To overcome numerical difficulties associated with computation of the uncertainties associated with 

predictive differences, a new method was applied that relies partially on finite-difference 

sensitivities and partially on carrying out model runs to actually compute the predictive differences. 

While the method is unlikely to be completely immune from the numerical problems that beset 

predictive difference uncertainty evaluation using purely linear methods, it appears to provide more 

realistic estimates of the uncertainties associated with predictive differences. It is probable that the 

method could be further developed to improve quantification of predictive difference uncertainties 

while still retaining a high degree of numerical frugality. 

Analyses reported herein suggest that uncertainty intervals pertaining to differences of model 

outputs that are similar to model outputs used in the calibration process are very small. The 

uncertainties of these differential predictions are therefore likely to be dominated by unquantifiable 

effects of model structural defects. Hopefully, however, these will be small in magnitude, as their 

expressions are supposedly largely eliminated through the model output differencing process.  

Indicators of the magnitude of the effects of structural defects on predictions that are similar in 

nature to model outputs used in the calibration process can be gleaned from the magnitudes of 

calibration residuals associated with these model output types. To some extent, the smaller are 

these residuals, the smaller will be the magnitude of potential predictive noise associated with 

related predictions (and predictive differences). However caution must be exercised in attempting to 

reduce residuals by too much as a structural noise eradication strategy, especially for a coarse-

gridded regional model such as the NFSEG model. White et al (2014) and Doherty and Christensen 

(2011) show that while it may be possible to reduce residuals to low levels in a highly parameterized 

calibration context, parameters may be forced to adopt roles which compensate for model defects 

in achieving this level of model-to-measurement fit. The predictive outcomes of the surrogate roles 

that parameters may thereby be forced to play may be worse than the original problem of high 

residuals; an unknown level of unquantifiable bias may be introduced to many model predictions.  

Finally, this document has also exemplified other quantities that can be calculated using linear 

analysis as an adjunct to highly parameterized inversion. These include parameter identifiability, 

relative parameter uncertainty variance reduction, contributions made by different parameter 

groups to the pre- and post-calibration uncertainties of predictions of interest, and the information 

that members of the calibration dataset carry that is pertinent to these same predictions. 




